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Numerical simulations by Tanaka and co-workers indicate that glass-forming systems of moderately
polydisperse hard-core particles, in both two and three dimensions, exhibit diverging correlation lengths. These
correlations are described by Ising-like critical exponents, and are associated with diverging, Vogel-Fulcher-
Tamann, structural relaxation times. Related simulations of thermalized hard disks indicate that the curves of
pressure versus packing fraction for different polydispersities exhibit a sequence of transition points, starting with
a liquid-hexatic transition for the monodisperse case, and crossing over with increasing polydispersity to glassy,
Ising-like critical points. I propose to explain these observations by assuming that glass-forming fluids contain
twofold degenerate, locally ordered clusters of particles, similar to the two-state systems that have been invoked
to explain other glassy phenomena. This paper starts with a brief statistical derivation of the thermodynamics of
thermalized, hard-core particles. It then discusses how a two-state, Ising-like model can be described within that
framework in terms of a small number of statistically relevant, internal state variables. The resulting theory agrees
accurately with the simulation data. I also propose a rationale for the observed relation between the Ising-like
correlation lengths and the Vogel-Fulcher-Tamann formula.
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I. INTRODUCTION

Recent numerical simulations by Tanaka and co-workers
[1–3] indicate that glass-forming systems of moderately
polydisperse, thermalized, hard-core particles, in both two
and three dimensions, exhibit diverging bond-orientational
correlation lengths with Ising-like critical exponents. They also
exhibit diverging relaxation times consistent with the Vogel-
Fulcher-Tamann formula. A separate analysis by Mosayebi
et al. [4], for a three dimensional, bidisperse, Lennard-Jones
model, similarly produces an Ising-like correlation length, with
an ordering mechanism that apparently is different from the
bond-orientational one seen by Tanaka. Taken as a whole,
along with the pressure-density curves measured by Kawasaki
and Tanaka [2] for hard disks at varying polydispersities,
this emerging body of evidence raises the possibility that
glass-forming liquids exhibit some underlying universality.
My purpose in this paper is to explore one such possibility.

It is not clear how the behaviors reported in [1–3] can be
consistent with existing glass theories. They are reversible
features of thermodynamically equilibrated states; therefore,
it seems unlikely that they can be explained by facilitation
models that have no nontrivial thermodynamic properties [5].
Mode coupling theory [6,7] does start with a well posed model
of a thermally equilibrated molecular fluid, but its perturbation-
theoretic nature prevents it from probing strongly collective
phenomena at glass transitions. There is a large literature
on topological constraint theories of molecular glasses, in
which the constraints are imposed by chemical bonds. (See [8]
for a concise review.) The intuitively attractive concept of
“rigidity percolation” that is central to the constraint theories
may be related to the Ising-like correlations considered here.
That conjecture deserves further study from a statistical
thermodynamic point of view; but it is beyond the scope of the
present discussion.

The computational models used in [1,2] are systems of
particles with short-ranged interactions and intrinsic fluidlike
disorder. Such models are physically very far from the

spin-glass models with long ranged forces and quenched
disorder that have been used, for example, as the basis for the
random first-order transition theory (RFOT) [9,10]. My own
excitation-chain (XC) theory [11] originally was introduced as
a way of avoiding the weaknesses I perceived in RFOT [12];
but the diverging length scale predicted by the XC theory does
not have Ising-like critical exponents. It seems to me, therefore,
that Ising-like universality—if confirmed—must arise from
some previously unexpected, fundamental feature of a large
class of glass-forming fluids.

Throughout this paper, I focus primarily on systems of
thermalized particles interacting only via very short ranged,
repulsive forces. By “thermalized,” I mean that the particles
have an average kinetic energy determined by their tempera-
ture or by the temperature of an inert fluid in which they are
immersed. In thermodynamic equilibrium, hard-core systems
of this kind are characterized entirely by steric constraints
and configurational entropy. As remarked above, they are the
antitheses of the models with infinitely long-ranged interac-
tions that are used as starting points for some glass theories,
e.g., RFOT. They contain no stored elastic energy. Nor, for
classical systems of this kind, can the entropy associated
with kinetic degrees of freedom play any role in determining
equilibrium structures; the kinetic energy simply factors out
of the partition function. Thus, hard-core simulations, and
analogous experiments using hard-core colloidal particles,
pose an especially clean theoretical challenge.

Section II of this paper contains a brief summary of the
simulations reported in [1,2,4] Then, in Sec. III, I present a
statistical derivation of the thermodynamics of thermalized,
hard-core particles, which also serves to emphasize the role
of properly chosen internal state variables. In the main part of
this paper, I use this thermodynamic framework to develop an
Ising-like theory of disordered, hard-core materials. The basic
ingredient of this theory is a population of twofold degenerate,
topologically oriented, clusters of particles, similar to the two-
state systems that have been invoked to explain other glassy
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phenomena [13,14]. In Sec. IV, I present a rationale for this
theory, and then, in Secs. V and VI, show that it predicts both
Ising-like, bond-orientational correlations, and a sequence of
critical ordering transitions along the curves of pressures p as
functions of packing fractions φ for varying polydispersities.
In Sec. VII, I propose a rationale for Tanaka’s observed relation
between the correlation length and the Vogel-Fulcher-Tamann
relaxation times.

In Sec. IV, however, I also argue that Ising symmetry must
cross over to full rotational symmetry when the correlations
become sufficiently long-ranged near critical points. As a
result, the two-state theory must fail in the immediate vicinities
of ordering transitions. Nevertheless, this theory accounts
remarkably well for the simulation results, and may therefore
provide a unified point of view for understanding a wider range
of glassy behaviors. I conclude in Sec. VIII with some remarks
about that conjecture.

II. SIMULATION RESULTS

In [1], Tanaka et al. report Brownian simulations of a variety
of two and three dimensional systems, including (but not
restricted to) polydisperse hard disks and spheres. They deduce
bond-orientational correlation exponents by finite-size scaling
analyses. They also report measurements of relaxation times τα

as functions of packing fraction and degree of polydispersity.
As emphasized by Tanaka in [3], the dramatic slowing down
near the glass transitions prevents these simulations from
coming sufficiently close to the critical points to confirm the
conjectured limiting behaviors. They can observe growth of
correlations by only about one decade at best. It seems to me,
however, that the consistency between these results for a range
of different models means that we may take them seriously,
at least pending further study. The independent analysis by
Mosayebi et al. [4], for a three dimensional, bidisperse,
Lennard-Jones system, adds weight to this evidence. In
[3], Tanaka reports seeing no bond-orientational order in
glass-forming, binary systems. In [4], however, Ising-like
correlations are observed by looking at distant, nonaffine,
linear responses to local perturbations, which could mean that
some different kind of ordering mechanism is operative here.
If so, there is additional reason to look for the origin of this
universality.

The Ising-like picture that emerges in both [1] and [4]
is that the correlation lengths ξ are proportional to t−ν

with ν = (2/d) − α (hyperscaling), where d is the spatial
dimensionality, α is the specific-heat exponent (negligibly
small for these purposes), and t is a dimensionless measure
of the distance from a critical point. For thermally controlled
systems, t = (T − Tc)/Tc, where Tc is the critical temperature.
For hard-core particles, the temperature T is replaced by the
inverse of the packing fraction φ. For both d = 2 and 3, the
structural relaxation time τα is found to be consistent with a
Vogel-Fulcher-Tamann (VFT) relation, log (τα) ∼ ξd/2 ∼ t−1.

More evidence bearing on the phase transitions that occur in
these systems is summarized in Fig. 2 of [2]. Here, Kawasaki
and Tanaka have plotted the pressure p as a function of φ for
simulated hard disks at a sequence of increasing percentage
polydispersities �. (� measures the width of a Gaussian
distribution of particle radii.) A selection of points from

that data set is shown below in Fig. 2. As expected, the
monodisperse system at � = 0% exhibits an apparently sharp
transition between liquid and hexatic phases at φ ∼= 0.69. With
increasing �, the transition points on the p(φ) curves move to
larger p’s and φ’s, and become less and less distinct. They are
invisible in the pressure data above � = 9%, which is the value
of the polydispersity for which Tanaka et al. [1] report a bond-
orientational correlation length that extrapolates to infinity at
φ ∼= 0.787. The important point for present purposes is that the
sequence of pressure curves in Fig. 2 of [2] appears to indicate
a smooth crossover from a liquid-hexatic transition at � = 0%
to Ising-like critical points for � � 9%—a qualitative change
of universality class.

III. STATISTICAL THERMODYNAMICS

In preparation for developing a model of thermalized,
hard-core, glass-forming particles, we need to understand the
statistical thermodynamics of such systems. The following
analysis is based on [15] and is almost, but not exactly, identical
to that presented in [16].

In the absence of interaction energies, the only extensive
quantity available for describing a hard-core system is its
volume V . (Throughout this paper, the term “volume” means
either three dimensional volume or two dimensional area.) V

must be a function of the entropy S plus a small set of internal
state variables that govern the responses of the system to
external forces. Denote these variables by �α,α = 1, . . . n or,
equivalently, by the set {�}. As discussed in [15], the �α must
be extensive quantities, or spatial averages of such quantities,
each carrying its own entropy. In the thermodynamic limit
of very large systems, the total entropy, say S(V,{�}), must
approach its equilibrium value when the �α approach their
own equilibrium values. I discuss the choice of these variables
in Sec. V; but, first, I consider only the general structure of the
theory.

For simplicity, assume that the kinetic degrees of freedom
of the particles plus the degrees of freedom of the heat bath
in which the system is immersed constitute a single thermal
reservoir at temperature θ = kBT . Denote the energy of this
reservoir by UR . Because the hard-core configurational degrees
of freedom carry no potential energy, UR is the total energy
of the system. Therefore, the first law of thermodynamics is
simply U̇R = −p V̇ .

The total entropy of this system, S(V,{�}), is the sum
of the configurational entropy, say SC , and the entropy of
the reservoir, say SR . SC(V,{�}) is a constrained entropy
computed by counting the number of configurations with fixed
values of V and {�}. Conversely, V = V (SC,{�}). In analogy
to the notation of Edwards and co-workers [17–19], define the
compactivity X by writing

X =
(

∂V

∂SC

)
{�}

. (3.1)

Thus, the first law becomes

U̇R = θ ṠR = −p V̇

= −p X ṠC − p

n∑
α=1

∂V

∂�α

�̇α. (3.2)

012122-2



ISING MODEL OF A GLASS TRANSITION PHYSICAL REVIEW E 88, 012122 (2013)

The second law, ṠC + ṠR � 0, is best written by using Eq. (3.2)
to eliminate ṠC , with the result

ṠR

(
1 − θ

p X

)
− 1

X

n∑
α=1

∂V

∂�α

�̇α � 0. (3.3)

As usual, the requirement that this inequality be satisfied for
arbitrary variations of external conditions implies that each
of the terms on the right-hand side of Eq. (3.3) be separately
non-negative. In particular, the first term is non-negative if

ṠR ∝ 1 − θ

p X
, (3.4)

which means that, in the equilibrium limit, X → θ/p.
To interpret the remaining terms on the right-hand side of

Eq. (3.3), remember that, in a statistical sense, the internal
variables {�} describe only a fraction of the number of
configurational degrees of freedom of the system. To account
for the remaining internal degrees of freedom, write

SC(V,{�}) = S({�}) + S1, (3.5)

and

V (SC,{�}) = V({�}) + V1(S1)

= V({�}) + V1[SC − S({�})], (3.6)

where S({�}) is the entropy associated with the internal state
variables; V({�}) is the corresponding volume; and S1 and V1

are, respectively, the entropy and volume associated with all
the degrees of freedom other than the {�}. Then, for each α,

∂V

∂�α

= ∂V
∂�α

− X
∂S
∂�α

= ∂

∂�α

F({�}), (3.7)

where

F({�}) = V({�}) − X S({�}). (3.8)

Inserting this result into Eq. (3.3), satisfying the second-law
inequality separately for each term in the sum over α, and
taking the equilibrium limit, we find that

�̇α ∝ − ∂

∂�α

F({�}) → 0. (3.9)

Thus, F({�}) is a “free volume,” analogous to a free energy,
whose minimum in the space of variables {�} locates the
equilibrium state of the system. The values of the {�} are
determined by the equations

p

θ
= ∂S/∂�α

∂V/∂�α

. (3.10)

Note that Eq. (3.10) is what we would have found had we
simply maximized the entropyS for a fixed volumeV , and used
X = θ/p as a Lagrange multiplier. The preceding derivation is
more general in the sense that it includes the residual quantities
S1 and V1, which will play roles in the following analysis.

IV. TWO-STATE SYSTEMS

The first step in constructing a model of hard-core particles
within the framework outlined in Sec. III must be to choose
the internal state variables �α . In doing this, we must decide

which of the degrees of freedom of the system as a whole are
statistically relevant, and therefore should be included among
the �α , and which can be included implicitly in the residual
quantities S1 and V1 defined in Eqs. (3.5) and (3.6).

In some way, one or more of these variables must describe
the bond-orientational order observed by Tanaka et al. [1]
Tanaka’s principal innovation has been to look for spatial
correlations, not between particle positions per se, but between
the positions of particles in topologically similar environments.
Specifically, in what I believe to be the most definitive of
their two-dimensional simulations [1], Tanaka et al. measured
the time-averaged, complex, hexatic order parameter �̄6 as a
function of position and packing fraction φ; and they computed
the two-point correlation 〈�̄6(r) �̄∗

6 (0)〉 as a function of the
separation r . From the latter quantity, they computed the
correlation length ξ (φ), and found that it scaled as described
in Sec. II as a function of t ≡ (φc − φ)/φc, where the critical
packing fraction φc has replaced T −1

c . Similar results were
obtained in three dimensions, where the relevant topological
order parameter was found to be the degree of hexagonal-close-
packed (as opposed to icosahedral) order. (See also [20].)

It might seem that a topological order parameter such as �̄6

would necessarily be one of the �α . Indeed, �̄6 is frequently
used as an argument of a Landau free energy, from which
equilibrium states of two-dimensional systems are determined
by a variational procedure formally identical to Eqs. (3.8) and
(3.10). (For example, see [21].) However, we need to look more
closely at such models before trying to use them to describe
glass formation.

In the monodisperse limit, Tanaka’s hard disks undoubtedly
undergo the liquid-hexatic transition that has been studied
intensely ever since the pioneering numerical simulations of
Alder and Wainwright [22]. The standard description of such
transitions in microscopically uniform materials is the two-
dimensional melting theory of Kosterlitz, Thouless, Halperin,
Nelson, and Young [23–27]; but this “KTHNY” theory may
not be what we need to describe the most important properties
of polydisperse, glass-forming liquids. KTHNY describes the
melting of a hexatically ordered phase as a process in which
a dilute population of disclination pairs undergoes a thermally
induced unbinding transition, thereby destroying long-range
orientational order in a distinctly non-Ising manner. In contrast,
a glass-forming liquid, well away from a KTHNY transition,
cannot naturally be described by a population of disclinations.
Even if it were possible to do so in some formal way, we know
that the KTHNY analysis fails when that population becomes
too dense, as must happen in the liquid phase. Thus, it should
be more productive to construct a theory in which topological
order emerges from within a liquidlike state, instead of, as in
KTHNY, starting from a state with infinitely long range order
and asking how it melts.

Accordingly, I propose that the fluctuating liquid state of
a glass-forming material be visualized as one in which topo-
logically ordered clusters of particles appear and disappear in
a background of disordered, fluidlike particles. These ordered
clusters may be favored by steric (or energetic) interactions;
in the liquid phase, they are disfavored by the entropy of the
system as a whole. As the pressure is increased, they come
closer together, and the steric forces make it favorable for
them to be aligned with each other. Thus, topological order
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grows with pressure. A mathematical description of how this
happens is presented in Sec. V.

My main hypothesis is that these clusters are statistically
most likely to be two-state systems. The glass literature
contains many references to such systems. For example, in
1972, Anderson, Halperin, and Varma [13] based their theory
of low-temperature anomalies in glasses on the hypothesis
that “in any glass system there should be a certain number
of atoms (or groups of atoms) which can sit more or less
equally well in two equilibrium positions.” More recently,
my colleagues and I have used a similar argument to justify
the model of two-state, shear transformation zones (STZ’s)
that we have used in theories of amorphous plasticity [14].
Twofold symmetry is especially important for present purposes
because it is the Ising symmetry, and thus is consistent with the
observed Ising-like critical exponents. Moreover, the following
argument in favor of twofold symmetry is independent of the
specific nature of the ordering, or even the dimensionality,
and thus may lead to the kind of universality that seems to be
emerging in the computational experiments.

To see how two-state systems might naturally occur in
theories of disordered materials, note that a spatially varying
order parameter such as �̄6 should be defined as an average
over some coarse-graining length scale. If that scale is too
small, say, only one or two particle spacings, then �̄6 will
be large in some places and small in others; but changing the
local orientation at a hexatic site, i.e., changing the phase of �̄6,
almost certainly increases the local volume (or energy), so that
the system is rigid at particle-sized length scales. At the other
extreme, if the coarse-graining scale is very large, and if we are
not too close to an orientational ordering transition, then many
different orientations will be degenerate in the sense of having
the same volumes or energies, but the averaged magnitude of
�̄6 will be too small to provide useful information.

An equivalent way of looking at this situation is to note
that the small clusters of particles that play a role in forming
bond-orientational order are those that have the sterically
preferred topology, and also have enough flexibility to reorient
themselves in the presence of their neighbors. The minimum
such flexibility is a twofold orientational degeneracy. More
flexible small clusters, with higher order degeneracies, are
statistically much less probable than the twofold clusters.
As a result, the natural coarse-graining scale—the one that
provides the statistically most relevant information—is the one
for which the ordered clusters are twofold degenerate, simply
because 2 is the smallest integer greater than 1.

The coarse-graining argument immediately points to a
limitation of the theory. As an Ising system approaches
a critical point, the correlations become long ranged, and
a renormalization-group analysis like that used by KTHNY
requires that we coarse grain on increasingly large length
scales. For hard disks in two dimensions, we eventually restore
circular (“xy”) symmetry [24], and cross over into a regime
where the KTHNY analysis again becomes valid. As a result,
even for a polydisperse system, there must be a region near
a critical ordering transition where the correlation length
diverges according to the KTHNY prediction. This crossover
region may be unobservably small as a function of packing
fraction for large polydispersities; but I think it must be there
in principle. Conversely, the crossover may also occur for a

monodisperse system, because the liquid phase is intrinsically
disordered away from criticality.

A fundamental question regarding the two-state hypothesis
is whether it can be derived systematically from a well defined
description of a many-body system. I see no reason why
such a derivation should not be possible. Perhaps the many-
body strategy presented recently by Yaida [28], which also
concludes that glassy systems belong to the Ising universality
class, is a step in this direction. However, in the next several
sections, I simply take the two-state model literally, and
examine how its predictions compare with the simulation data.

V. ISING-LIKE MODEL

A. Binary clusters

To describe the two-state picture mathematically, let N+
and N− be extensive variables denoting the numbers of, say,
“binary clusters” oriented in + and − directions with respect
to some direction in space. Degeneracy requires that, when a
cluster switches between + and − orientations, it continues to
make the same contribution, say v∗, to the volumeV introduced
in Eq. (3.6). Just as in the STZ theory, the actual orientations
denoted by ± need not be specified initially. In the STZ
case, we usually interpret the N± to be the numbers of zones
whose orientations are more nearly parallel or antiparallel to
an applied stress. In contrast to the STZ’s (or the disclinations),
there is no reason why the population of binary clusters should
be dilute. A large ordered region at high compression may
consist almost entirely of aligned clusters, whose specific
orientation may be the result of an accidental anisotropy or
a spontaneously broken symmetry.

The way in which orientational order is propagated between
neighboring positions in this model is via an Ising-like interac-
tion, in which neighboring clusters make smaller contributions
to the volume if their orientations are aligned than if they are
opposite to each other. Another way of thinking about this is
that the neighboring clusters break each other’s orientational
degeneracies in such a way as to increase the probability
of their alignment. This steric effect, the analog of an Ising
exchange coupling, is the reason why orientational order
increases in response to increasing pressure.

To make direct comparisons with the functions p(φ), we
need one more internal variable to describe how the system
as a whole expands and contracts in response to changing
pressure, and how that behavior couples to the internal state
of topological order. For this purpose, it is useful to introduce
a population of, say, N0 “voids” occupying volumes v0. In
order to play a role comparable to the N±, N0 must be a
collective variable describing a property of groups of particles
comparable in size to the binary clusters, and v0 must be a
volume associated with more than just one, particle-size void.
With the extra degree of freedom described by N0, the model
can make a transition with increasing pressure from dilute,
liquidlike states with large populations of voids, to dense
ordered states in which the voids disappear. Tanaka et al. show
such voids in their Voronoi tiling patterns for two dimensional
systems (see Fig. 2 in [1]), and assert that these voids play a
role in limiting the extent of hexatic correlations. That happens
here as well.
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B. Volume

In a first, mean-field statement of this model, the volume V
defined in Eq. (3.6) is

V ∼= N∗ v∗ + N0 v0 − J

2 (N∗ + N0)
(N2

+ + N2
−), (5.1)

where N∗ = N+ + N− is the total number of binary clusters,
and is therefore proportional to the extensive number of statis-
tically relevant, orientational degrees of freedom associated
with the partial volume V and the partial entropy S. The
pairwise interaction, proportional to the “exchange coupling”
J , is approximated here by the sum of the squares of the
densities of the ± clusters.

To see the analogy between Eq. (5.1) and an Ising system,
define

m = N+ − N−
N∗ , η = N∗

N∗ + N0
. (5.2)

The variable m is analogous to a magnetization; here, it is
the bond-orientational order parameter. η is a measure of how
close the system is to its maximum density; it vanishes in the
dilute limit, N0 → ∞, and goes to unity at high density where
the voids are squeezed out of the system. In terms of these
variables, Eq. (5.1) becomes

V(m,η)

N∗ = v∗ +
(

1

η
− 1

)
v0 − 1

4
J η (1 + m2). (5.3)

Note that the term proportional to J contains a factor
η, implying that ordering becomes weaker with increased
numbers of voids. Note also that V(m,η) is proportional to
N∗. Because the partial entropy S also must be proportional
to N∗, the latter quantity cancels out of the formula for the
pressure, and there is no need to include it among the relevant
internal variables. As a result, we can assume that {�} consists
of just the two variables m and η.

Equation (5.3) provides a formula for the packing fraction

φ = Ntot
〈v〉
V

, (5.4)

where Ntot is the fixed total number of particles in the system,
and 〈v〉 is the average volume of a single particle. If we measure
all volumes, including J , in units such that

Ntot 〈v〉 = N∗, (5.5)

then we can write

1

φ
= ṽ +

(
1

η
− 1

)
v0 − 1

4
J η (1 + m2), (5.6)

where ṽ = v∗ + V1/N
∗, and V1 is the residual volume defined

in Eq. (3.6). This scaling implies that both ṽ and v0 are
dimensionless numbers of the order of unity. The total number
of particles contained in V1 must be proportional to Ntot, i.e.,
V1 ∼ Ntot 〈v〉; and therefore, with the volume units defined
in Eq. (5.5), ṽ ∼ V1/N

∗ ∼ 1. Similarly, the total volume
associated with voids must scale like N0 v0 ∼ Ntot 〈v〉. Since
we have required N0 to scale with N∗ via Eq. (5.2), we again
may use Eq. (5.5) to find that v0 ∼ 1.

C. Entropy

Much of the physics of this model is contained in the choice
of the entropy S, defined in Eq. (3.5). Like V , S must be
proportional to the number of statistically relevant degrees of
freedom, N∗. Assume that S can be written in the form

S(m,η) ∼= S1(m) + S2(η). (5.7)

The two-state model implies that S1 is an Ising-like function:

S1(m)

N∗ = ln (2) − 1

2
(1 + m) ln (1 + m)

− 1

2
(1 − m) ln (1 − m). (5.8)

The choice of S2 is more interesting but slightly problem-
atic. If we make a lattice-gas approximation in which the N0

voids are distributed randomly over N∗ + N0 sites, we find

S2(η)

N∗ ≈ − ln (η) −
(

1

η
− 1

)
ln (1 − η), (5.9)

which has an ideal gas limit as η → 0, but vanishes very
weakly as η → 1. On the other hand, van der Waals behav-
ior, with p ∼ ∂S/∂η ∼ (1 − η)−1, would require that S2 ∼
ln (1 − η), which is unphysical because it diverges as η → 1.

My proposed alternative is

S2(η)

N∗ = − ln (η) + A

1 − ε
(1 − η)1−ε, (5.10)

where the parameter ε must be in the range 0 < ε < 1. Along
with the adjustable parameter A, ε tunes the strength of the
density dependence between weak and strong limits. For small
ε, S2 approximates lattice gas behavior; as ε → 1, it resembles
van der Waals. In any case, the choice of S2 for large η must be
regarded as a phenomenological strategy for data fitting in the
high-density limit, which is beyond the scope of the present
investigation. We know that this model lacks the ingredients
for describing the way in which the system becomes glassy or
crystalline at high densities. This is not a first-principles theory
of such behavior; but it is useful to work with an approximate
theory in which the high-density limit can be described.

D. Spatial variations

A more general formulation of this theory starts with
a partition function expressed as a functional integral over
spatially varying values of m and η:

Z(X) =
∫

δm

∫
δη e−F(m,η)/X. (5.11)

Relations such as Eq. (3.10) can be interpreted as mean-field
results, obtained by making a saddle-point approximation in
Eq. (5.11). As usual, writeF/N∗ ≡ f (m,η), and add a square-
gradient term in the bond-orientational order parameter m:

F
N∗ → f (m,η) + ξ 2

0

2
(∇m)2. (5.12)

Just as in the magnetic Ising model, the square-gradient term
has its origins in the pairwise interactions proportional to J in
Eq. (5.1).
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The standard procedure [29] for dealing with critical
systems of this kind is to start with the unrenormalized form
of of f (m,η), expand it in powers of m to obtain a Landau
approximation, and then perform a renormalization-group
analysis. Beyond m4, the higher powers in the expansion
become irrelevant; and it is easy to check that the fluctuations in
η are noncritical. Thus, we know that this procedure produces
the correct Ising scaling exponents for any set of starting
parameters such that f (m,η) has a mean-field critical point.
Of course, this procedure tells us nothing about the possibility
that the Ising symmetry might cross over to something else at
large length scales.

VI. EQUATIONS OF STATE

We already know from [1] and [4] that the correlation
exponents for large enough polydispersities � are consistent
with the renormalized Ising values ν ∼= 2/d. Thus, the most
interesting comparisons now are for the equations of state,
p(φ), for different �’s, reported in [2].

The mean-field approximation using Eq. (3.10) means that
we look for minima of f (m,η) in the space of variables m and
η. Thus, for variations with respect to m:

p

θ
= 1

J η m
ln

(
1 + m

1 − m

)
; (6.1)

and, for variations with respect to η:

p

θ
= 1

v0 + (J/4) η2 (1 + m2)

[
η + Aη2

(1 − η)ε

]
. (6.2)

The reference volume ṽ defined in Eq. (5.6), and the parameters
v0, A, and J , should depend, at least in a first approximation,
only on �, and not on η. With known values of these
parameters, Eqs. (5.6), (6.1), and (6.2) can be solved for p/θ ,
m, and η as functions of φ.

Note that these equations recover a perfect gas law at very
small values of η and m = 0. Equation (6.2) implies that p ≈
θ η/v0; and Eq. (5.6) implies that φ ≈ η/v0. Thus, as expected,
p ≈ θ φ.

A second limiting behavior of these equations is especially
interesting. Large polydispersities � are roughly equivalent
to high temperatures, which, in the magnetic analogy, imply
small values of the coupling coefficient J . Setting J = 0 in
Eqs. (5.6) and (6.2), we find

1

φ
→ ṽ +

(
1

η
− 1

)
v0, (6.3)

and

p v0

θ
→ η + Aη2

(1 − η)ε
. (6.4)

If the parameters ṽ, v0, A, and ε are independent of � in this
limit, then the functions p(φ) should collapse onto a single
curve. I show in Fig. 1 that this is nearly what happens for
� = 9% and 13%, the latter being the largest value for
which I have data available. This limiting behavior provides a
convenient way to fix several of the theoretical parameters.

The theoretical curve in Fig. 1 is computed from Eqs. (6.3)
and (6.4) as follows. I arbitrarily have set v0 = 1, in accord
with the argument following Eq. (5.6). I also have set
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FIG. 1. (Color online) Pressure as a function of packing fraction
for polydispersties � = 9% (red open squares) and 13% (blue open
triangles). The critical points are indicated by the corresponding solid
symbols. The blue theoretical curve shows the J = 0 limit according
to Eqs. (6.3) and (6.4). The pressure is expressed in dimensionless
units defined in [2].

θ = 0.025, which is the value given in [2], where it is measured
in units of the strength of the truncated, repulsive, Lennard-
Jones potential used in those simulations, and therefore sets the
scale for the pressure p. The remaining parameters have been
chosen to fit the data. I find ε = 0.60, about halfway between
the lattice gas and van der Waals limits, as discussed following
Eq. (5.10). Like v0 and θ , I assume that ε is a constant,
independent of �. According to Eq. (6.3), the maximum
packing fraction is φmax = 1/ṽ. For this large-� limit, and
this choice of ε, I find φmax = 0.832, and A = 5.6.

The Ising nature of Eqs. (5.6), (6.1), and (6.2) appears in
their reflection symmetry under m → −m, which is sponta-
neously broken at critical points. We can see this behavior at
the mean-field level by expanding the logarithm in Eq. (6.1)
to third order in m and solving the equation to find

m ≈
{

0, for η < ηc,

±√
3(η/ηc − 1), for η > ηc,

(6.5)

where the critical value of η is

ηc = 2 θ

pc J
, (6.6)

and pc is the critical pressure. This “magnetization” formula
changes substantially under renormalization; the mean-field
exponent implied by the square root, β = 1/2, changes to β =
1/8 for d = 2 and β ∼= 0.325 for d = 3. This abrupt increase
in m for η > ηc controls the behavior of the pressure at the
onset of ordering via the quantity m2 in the denominator of
the right-hand side of Eq. (6.2). Any meaningful comparison
of Eq. (6.2) with the data requires that we use an expression
for m2 that is consistent with the renormalized theory.

To approximate the renormalized behavior, I have replaced
the magnetization formula, Eq. (6.5), by one with the correct
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FIG. 2. (Color online) Pressure as a function of packing fraction,
from bottom to top, for polydispersties � = 0% (red circles), 5%
(green triangles), 7% (black circles), and 13% (blue triangles). The
corresponding solid curves indicate the theory described in the text.

Ising exponent:

m → M(η) =
{

0, for η < ηc,

μ [(η/ηc − 1)]β, for η > ηc,
(6.7)

and have used this approximation in Eqs. (5.6) and (6.2) instead
of the mean-field value of m determined by Eq. (6.1). In the
absence of a simple, accurate interpolation from small to large
values of η/ηc − 1, I have used Eq. (6.7) for all η, and have let
μ be an adjustable parameter. The only vestige of Eq. (6.1) in
the theory is the formula for ηc in Eq. (6.6), which is obtained
from Eq. (6.1) by taking the limit m → +0. We now may
interpret pc, φc, and ηc to be the renormalized values of those
quantities; thus they are numbers that we can deduce directly
from the data.

The results of these calculations, along with the simulation
data from [2], are shown in Fig. 2 for selected polydispersities:
� = 0%,5%,7%, and 13%. For � � 8%, the values of pc and
φc have been estimated directly from the data, because the
cusplike changes in slope at the critical points are visible. For
larger �’s, φc has been evaluated in [2] by fitting relaxation-
time measurements to a VFT formula; and the value of φc =
0.787 for � = 9% also is consistent with the correlation-length
measurements reported in [1]. The critical points for � = 9%
and 13% are indicated respectively by the solid square and the
solid triangle in Fig. 1.

If we know pc and φc for a given �, then Eqs. (5.6) and
(6.2), evaluated at m = 0 and η = ηc, plus the definition of ηc

in Eq. (6.6), provide three constraints on the five remaining
unknown parameters: ηc, ṽ, J , A, and μ. A fourth constraint
is obtained by estimating φmax by setting η = 1 in Eq. (5.6),
but keeping nonzero J ; that is

1

φmax

∼= ṽ − J

4
[1 + M2(1)]. (6.8)

This is an approximate relation, because M(η) given by
Eq. (6.7) is not accurate at η = 1; but Eq. (6.8) is a useful
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FIG. 3. (Color online) Dimensionless coupling coefficient J as a
function of percentage polydispersity �.

consistency check on the earlier large-� estimate, especially
in view of our lack of information about the glassy or ordered
states in this limit. The only remaining free parameter in this
analysis is μ. In computing the theoretical curves shown in
Fig. 2, I have used μ as the primary fitting parameter, and have
kept φmax = 0.832 for all �.

The comparisons between the theoretical curves and the
data in Fig. 2, and similar comparisons for other values of
� not shown here, reveal physically plausible trends in the
underlying parameters, especially the coupling coefficient J .
The main trend is that the critical points shift to higher values
of φ with increasing �, because increasing polydispersity
suppresses the ordering transition. The theoretical mechanism
that produces this effect is the decrease in J shown in Fig. 3.
In accord with the observations of Tanaka et al., J drops
abruptly at about � = 8%; but it does not drop to zero. The
values of J for � = 9% and 13% have been computed as
above, but using values for φc obtained from the correlation
length and relaxation time analyses instead of directly from the
p(φ) curves. This procedure produces values of ṽ and A that
are consistent with the J = 0 analysis, and does not visibly
affect agreement with the data for p(φ); thus it serves as a
consistency check. The small but nonzero values of J at large
� produce Ising-like glass transitions.

There are also more subtle effects. The reference volume
ṽ should be a slowly decreasing function of � because,
at large polydispersities, smaller particles can fit into the
spaces between larger particles in ways that do not happen in
monodisperse systems. The computed ṽ does decrease slightly
from 1.33 at � = 0% to 1.21 at � = 13%. The parameter A

is a measure of the entropy and, accordingly, increases with
“temperature” � in this region, from 4.0 to 5.6, the latter value
being the same as the one deduced from the J = 0 analysis.
The magnetization parameter μ decreases from 1.6 at � = 0%
to about 1.0 at � = 8%, but becomes impossible to measure
at the larger �’s where the critical transition is not visible in
the p(φ) curves. In plotting the curves for � = 9% and 13%,
I have simply set μ = 0.

VII. RELAXATION RATES

In [2], Kawasaki and Tanaka devote much of their effort
to measurements of the structural relaxation time τα , which
they fit to a VFT function. They observe directly that
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log (τα) ∼ ξd/2, which tells us immediately that, while the
glass transition may be Ising-like in its equilibrium behavior,
it is qualitatively different dynamically. In comparison, the
Hohenberg-Halperin [30] analysis tells us that the relaxation
time for fluctuations of a non-conserved Ising magnetization
diverges relatively weakly, like a power of ξ . The difference is
that relaxation events in a glass-forming fluid near its transition
point are highly collective phenomena, not amenable to the
perturbation-theoretic methods or the assumptions about the
nature of noise sources implicit in [30] or in mode coupling
theory [6,7].

For present purposes, assume that structural relaxations in
glass-forming materials occur at shear transformation zones
(STZ’s) [14,31–33] or at other similarly soft locations. The
STZ’s are naturally occurring structural defects that, in these
hard-core systems, contain enough excess volume that they
can undergo configurational rearrangements relatively easily.
If the characteristic excess volume of STZ’s is vZ , then their
equilibrium population is proportional to a Boltzmann factor
exp (− vZ/X), where X = θ/p. To estimate a spontaneous
STZ formation rate, and thus a relaxation rate, multiply this
Boltzmann factor by an attempt frequency, ρ(X)/τ0, where τ0

is a microscopic time determined by the kinetic energies of the
particles or the thermal fluctuations of the fluid in which they
are suspended. Note that this picture of an activated process
is already intrinsically nonperturbative. The dimensionless
attempt frequency ρ(X) describes glassy slowing down as X

decreases. It is proportional to τ0/τα; and its evaluation is the
goal of any glass theory.

Kawasaki and Tanaka [2] show by direct imaging that
relaxation events occur primarily in disordered regions, con-
sistent with the observation of Widmer-Cooper and Harrowell
[34] that particles undergo rearrangements in regions of high
“propensity.” In the present picture, this observation means
simply that the STZ formation volume vZ is smaller in the
disordered regions than in the ordered ones, so that the STZ’s
appear most frequently in the former. However, the attempt
frequency ρ(X) must be a collective property of the system
as a whole, rather than being determined just by the local
environments of a few particles.

The images of a glass-forming fluid shown in [2] imply
that correlated regions of size ξ are slowly fluctuating into
and out of existence, at a rate that I identify as being
proportional to ρ(X)/τ0. The STZ transitions provide the
mechanism by which these fluctuations occur; conversely, it
is these fluctuations that self-consistently generate the STZ’s.
To estimate this rate, note first that a correlated volume Vcorr

of linear size ξ contains a number of particles proportional to
ξd . In a thermally fluctuating system, each of these particles
makes small, independent displacements through distances
of the order of the interparticle spacing. Therefore, Vcorr

undergoes Gaussian fluctuations of a characteristic magnitude
δ Vcorr proportional to the square root of its size; that is,
δ Vcorr ∼ ξd/2. To estimate a time scale for these fluctuations,
note that they are slow, activated events. Therefore, the
statistical analysis in [15,16] tells us that their frequency is
proportional to

ρ(X) ∼ e− δVcorr/X ∼ e− ξd/2/Xc ∼ e− 1/tw , (7.1)

where w = d ν/2 = 1 − α/2 ∼= 1 for both d = 2 and 3. Thus,
if this rate is proportional to τ−1

α , we recover the VFT formula.
In this way, I also learn that the XC approximation for
computing ρ(X) used too specialized a relaxation mechanism.

The Gaussian approximation made in deriving Eq. (7.1)
is similar to one made by Kirkpatrick et al. in deriving
the RFOT theory [10]. Indeed, we may be discovering here
why these two approaches to glass theory produce similar
results. Note, however, that the argument leading to Eq. (7.1)
assumes that we already know the diverging correlation
length ξ , and then considers how that length determines the
relaxation rate. In RFOT, the Gaussian argument is used
to determine the length scale itself on the basis of kinetic
considerations. The term ξd/2 appears in RFOT as the effective
surface energy of an entropically favored droplet. Moreover,
Tanaka’s picture of fluctuating regions of bond-orientational
order seems qualitatively different from the mosaic structure
postulated in RFOT and in its reinterpretation by Bouchaud
and Biroli [35].

We can push the argument leading to Eq. (7.1) a bit further
by noting that it implies

log

(
τα

τ0

)
≈ D φ

φc − φ
; D = pc (a ξ0)d/2/θ, (7.2)

where a is proportional to the particle spacing. The bare corre-
lation length ξ0, defined in Eq. (5.12), may be approximately
the linear size of a binary cluster, and therefore ought to be a
small multiple of a. We know that pc increases with �. Thus,
the “fragility” parameter D is predicted to increase with � –
the glass becomes “stronger” – in at least qualitative agreement
with the increasing values of D shown in the inset to Fig. 7
of [2].

VIII. CONCLUDING REMARKS

My main hypothesis is that a population of statistically
relevant, twofold-degenerate, binary clusters describes a broad
class of disordered systems in which the constituent particles
have a tendency to develop some kind of local order. If and
when this hypothesis is correct, the system exhibits Ising-like
behavior; in particular, correlation lengths associated with the
favored ordering diverge with Ising-like critical exponents at
glass transitions. These Ising correlations have been observed
in several numerical simulations, primarily by Tanaka and
co-workers. As discussed in Sec. VII, the observed Vogel-
Fulcher-Tamann behavior of structural relaxation times also
emerges from this two-state hypothesis.

Tanaka’s sequence of two-dimensional, hard-disk transi-
tions, visible in the functions p(φ) shown here in Fig. 2,
indicates a crossover from hexatic to glassy transitions with
increasing polydispersity �. As discussed at the end of Sec. IV,
however, we know that the theory fails in the close vicinity
of these critical points, because the Ising symmetry must
change to full circular symmetry when the correlations become
sufficiently long ranged. We know from numerical studies by
Jaster [36] that the monodisperse hard-disk system undergoes
a KTHNY transition with a correlation length that grows
exponentially near φc, in contrast to the power-law growth
characteristic of Ising systems. We also know from Anderson
et al. [37] that, when examined numerically with high precision
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extremely close to φc, this transition is revealed to be weakly
first order. There is also an experimental study by Han et al.
[38], who see KTHNY behavior for two-dimensional colloids
at 3% polydispersity.

When looked at somewhat less closely, however, the two-
state Ising theory appears to be remarkably successful. It
correctly predicts a sequence of critical ordering transitions
with diverging correlation lengths, even for � = 0. The
arguments in Sec. IV, if correct, make the Ising symmetry
seem robust; there is no place in the two-state picture for a
symmetry-breaking analog of a magnetic field. The theory
also makes roughly credible predictions for the ordered states
at φ > φc, where the correlations again become short ranged,
and mean-field approximations may regain validity. The small,
negative values of dp/dφ in the transition regions might be
physically realistic indications of the weak, phase-separation
instability reported in [37].

The conjectured validity of mean-field approximations in
the ordered regime might make it possible for some missing
ingredients of the theory to be restored within the Ising-like
formulation. For example, the theory in its present state
contains no hint of translational order. It does not tell us how
or where to look for competition between glass formation and
crystal growth. It resorts to a phenomenological expression
for the entropy, in Eq. (5.10), for computing the pressure at
high packing fractions, where translational order should be
present, at least for small �. It says nothing specific about

the orientations of the local topologies, or the possibility of
“grain boundaries” between topologically oriented regions.
It contains no information about how particles of different
sizes are distributed spatially. For example, in a bidisperse
system of hard disks, Donev et al. [39] found phase separation
between the large and small particles in equilibrated structures
at the highest densities. If the two-state, Ising-like model does
provide a reasonable starting approximation, then it might
accommodate some of these other physical properties of glassy
materials.

I emphasize, however, that this equilibrium theory of a
glass-forming liquid is definitely not a theory of the glassy state
itself. It might be a starting point for understanding how glass-
forming systems fall out of equilibrium and lose ergodicity
during cooling or compression near their transition points; but
it is not yet such a theory.
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